
Macintosh Technical Notes

New Technical Notes

Developer Support


®Macintosh

MultiFinder Miscellanea
Toolbox M.TB.MultifinderMisc

Revised by: Dave Radcliffe & Keith Rollin August 1989
Written by: Jim Friedlander November 1987

This Technical Note discusses MultiFinder issues of which programmers should be aware.
Changes since June 1988: Updated and generalized sample code to reflect new MPW 3.0
calls in both C and Pascal for saving and restoring A5 for interrupt code that accesses
application globals. Removed text that can be found in Programmer’s Guide to MultiFinder,
and added a note about _PostEvent.

Switching

For conceptual clarity, it is best to think of MultiFinder 6.0 and earlier as using three types of
switching: major, minor, and update. All switching occurs at a well defined times, namely,
when a call is made to either _WaitNextEvent, _GetNextEvent, or _EventAvail.

Major switching is a complete context switch, that is, an application’s windows are
moved from the background to the foreground or vice versa. A5 worlds are switched, and
the application’s low-memory world is switched. If the application accepts Suspend and
Resume events, it is so notified at major switch time.

Major switching will not occur when a modal dialog is the frontmost window of the front
layer, though minor and update switching will occur. To determine whether major switching
will occur, MultiFinder checks (among other things) if the window definition procedure of
that window is dBoxProc. If it is, then MultiFinder won’t allow a switch via the user
clicking on another application. A window definition procedure of dBoxProc is
specifically reserved for modal dialogs—when most users see a dBoxProc, they are
expecting a modal situation. If you are using a dBoxProc for a non-modal window, we
strongly recommend that you change it to some other window type, or risk the wrath of the
User–Interface Thought Police (UITP).

Minor switching occurs when an application needs to be switched out to give time to
background processes. In a minor switch, A5 worlds are switched, as are low-memory
worlds, but the application’s layer of windows is not switched, and the application won’t

Developer Technical Support August 1989

Macintosh Technical Notes

be notified of the switch via Suspend and Resume events.

Update switching occurs when MultiFinder detects that one or more of the windows
of an application that is not frontmost needs updating. This happens whether or not the
application has the canBackground bit in the 'SIZE' –1 resource set. This switch is
very similar to minor switching, except that update events are sent to the application whose
window need updating.

Developer Technical Support August 1989

Macintosh Technical Notes

Both minor and update switches should be transparent to the frontmost application.

Suspend and Resume Events

If your application does not accept Suspend and Resume events (as set in the 'SIZE' –1
resource), then if a mouse-click event occurs in a window that isn’t yours, MultiFinder will
send your application a mouse-down event with code inMenuBar (with menuID equal to
the ID of the Apple menu and menuItem set to “About MultiFinder…”). The reason that
MultiFinder does this is to force your application to think that a desk accessory is opening,
so that it will convert any private scrap that it might be keeping. MultiFinder is expecting
your application to call _MenuSelect—if you don’t, it will currently issue a few more
mouse-down events in the menu bar before finally giving up. This isn’t really a problem,
but a lot of developers have run into it, especially in “quick and dirty” applications.

If you are switching menu bars with _SetMenuBar (and switching the Apple Menu)
during the execution of your application, then you should definitely make sure that your
application accepts Suspend and Resume events. MultiFinder records the ID of the original
Apple menu that you use and won’t keep track of any changes that you make to the Apple
menu. So, in the above situation, MultiFinder will give you a mouse-down event in the
menu bar with the menuItem set to the item number of “About MultiFinder…” that was in
the original Apple menu, which could be quite a confusing situation. If you set the
MultiFinder friendly bit in the 'SIZE' resource, MultiFinder will never give you these
mouse-down events.

Referencing Global Data (A5 and MultiFinder)

MultiFinder maintains a separate A5 world for each application. MultiFinder switches A5
worlds as appropriate, so most applications don’t have to worry about A5 at all (except to
make sure that it points to a valid QuickDraw global record at _GetNextEvent or
_WaitNextEvent time). MultiFinder also switches low-memory globals for you. To get
the value of the application’s A5, use the routines from TM.OV.A5.

If an application uses routines that execute at interrupt time and accesses globals, then it
needs to be concerned about A5. MultiFinder affects four basic types of interrupt routines:

• VBL tasks
• Completion routines
• Time Manager tasks
• Interrupt service routines

VBL Tasks

Developer Technical Support August 1989

Macintosh Technical Notes

If an application installs a VBL task into its application heap, MultiFinder will currently
“unhook” that VBL routine when it switches that application out (using either a major or a
minor switch). It will “rehook” it when the application is switched back in. A VBL task that
is installed in the system heap will always receive time, that is, it will never be “unhooked.”
Given this condition, it is technically not necessary for a VBL task that is in the application’s
heap to worry about its A5 context, since it will only be running when that application’s
partition is switched in. However, we would still like to encourage you to set up A5 by
carrying its value around with the VBL, since we may change the way this works in future

Developer Technical Support August 1989

Macintosh Technical Notes

versions of MultiFinder (and even without MultiFinder, the VBL could trigger at a time
when A5 is not correct).

The following short MPW examples show how to do this using the new MPW 3.0 calls
mentioned in M.OV.A5. Please note that this technique does not involve writing into your
code segment (we’ll get to that later), we just put our value of the application’s A5 in a
location where we can find it from our VBL task. Nor does it depend on the VBL task
information being allocated globally. This gives you more flexibility setting up your VBL.

This example also serves to demonstrate how one might write a completion routine for an
asynchronous Device Manager call. It is not intended to be a complete program, nor to
demonstrate optimal techniques for displaying information.

MPW Pascal 3.0

UNIT VBLS;

{$R-}

INTERFACE

USES
Dialogs, Events, OSEvents, Retrace, Packages, Types, Traps;

CONST
Interval = 6;
rInfoDialog = 140;
rStatTextItem = 1;

TYPE
{ Define a record to keep track of what we need. Put theVBLTask into the
record first because its address will be passed to our VBL task in A0. }
VBLRec = RECORD

theVBLTask: VBLTask; { the actual VBLTask }
VBLA5: LongInt; {saved CurrentA5 where we can find it }

END;
VBLRecPtr = ^VBLRec;

VAR
gCounter: LongInt; { Global counter incremented by VBL }

PROCEDURE InstallVBL;

IMPLEMENTATION

{ GetVBLRec returns the address of the VBLRec associated with our VBL task.
 This works because on entry into the VBL task, A0 points to the theVBLTask
 field in the VBLRec record, which is the first field in the record and that
 is the address we return. Note that this method works whether the VBLRec
 is allocated globally, in the heap (as long as the record is locked in
 memory) or if it is allocated on the stack as is the case in this example.
 In the latter case this is OK as long as the procedure which installed the
 task does not exit while the task is running. This trick allows us to get
 to the saved A5, but it could also be used to get to anything we wanted to
 store in the record. }
FUNCTION GetVBLRec: VBLRecPtr;

INLINE $2E88; { MOVE.L A0,(A7) }

PROCEDURE DoVBL (VRP: VBLRecPtr);
{ DoVBL is called only by StartVBL }
BEGIN

gCounter := gCounter + 1; { Show we can set a global }

Developer Technical Support August 1989

Macintosh Technical Notes

VRP^.theVBLTask.vblCount := Interval; { Set ourselves to run again }
END;

PROCEDURE StartVBL;
{ This is the actual VBL task code. It uses GetVBLRec to get our VBL record
 and properly set up A5. Having done that, it calls DoVBL to increment a
 global counter and sets itself to run again. Because of the vagaries of
 MPW C 3.0 optimization, it calls a separate routine to actually access
 global variables. See M.OV.A5 for the reasons for this, as well
 as for a description of SetA5. }
VAR

curA5: LongInt;
recPtr: VBLRecPtr;

BEGIN
recPtr := GetVBLRec; { First get our record }
curA5:= SetA5(recPtr^.VBLA5); { Get our application's A5 }

{ Now we can access globals }
DoVBL (recPtr); { Call another routine for actual work}

curA5:= SetA5(curA5); { restore original A5, ignoring result }
END;

PROCEDURE InstallVBL;
{ InstallVBL creates a dialog just to demonstrate that the global variable
 is being updated by the VBL Task. Before installing the VBL, we store
 our A5 in the actual VBL Task record, using SetCurrentA5 described in
 M.OV.A5. We'll run the VBL, showing the counter being incremented,
 until the mouse button is clicked. Then we remove the VBL Task, close the
 dialog, and remove the mouse down events to prevent the application from
 being inadvertently switched by MultiFinder. }

VAR
theVBLRec: VBLRec;
infoDPtr: DialogPtr;
infoDStorage: DialogRecord;
numStr: Str255;
theErr: OSErr;
theItemHandle: Handle;
theItemType: INTEGER;
theRect: Rect;

BEGIN
gCounter:= 0; { initialize the global variable }
infoDPtr:= GetNewDialog(rInfoDialog, @infoDStorage, Pointer(-1));
DrawDialog(infoDPtr);
GetDItem(infoDPtr, rStatTextItem, theItemType, theItemHandle, theRect);

theVBLRec.VBLA5:= SetCurrentA5; { get our A5 }
WITH theVBLRec.theVBLTask DO

BEGIN
vblAddr:= @StartVBL; { pointer to VBL code }
vblCount:= Interval; { frequency of VBL in System ticks }
qType:= ORD(vType); { qElement is a VBL type }
vblPhase:= 0; { no phases }

END;

theErr:= VInstall(@theVBLRec.theVBLTask); { install this VBL task }
IF theErr = noErr THEN { we'll show the global value in }

BEGIN { the dialog until a mouse click }
REPEAT

NumToString(gCounter, numStr);

Developer Technical Support August 1989

Macintosh Technical Notes

SetIText(theItemHandle, numStr);
UNTIL Button;

theErr:= VRemove(@theVBLRec.theVBLTask); { remove the VBL task }
END;

CloseDialog(infoDPtr); { get rid of the info dialog }
FlushEvents(mDownMask, 0); { remove all mouse down events }

END;

END.

MPW C 3.0

#include <Events.h>
#include <OSEvents.h>
#include <OSUtils.h>
#include <Dialogs.h>
#include <Packages.h>
#include <Retrace.h>
#include <Traps.h>

#define INTERVAL 6
#define rInfoDialog 140
#define rStatTextItem 1

/*
* These are globals which will be referenced from our VBL Task
*/
long gCounter; /* Counter incremented each time our VBL gets called */

/*
* Define a struct to keep track of what we need. Put theVBLTask into the
* struct first because its address will be passed to our VBL task in A0
*/
struct VBLRec {

VBLTask theVBLTask; /* the VBL task itself */
long VBLA5; /* saved CurrentA5 where we can find it */

};
typedef struct VBLRec VBLRec, *VBLRecPtr;

/*
* GetVBLRec returns the address of the VBLRec associated with our VBL task.
* This works because on entry into the VBL task, A0 points to the theVBLTask
* field in the VBLRec record, which is the first field in the record and that
* is the address we return. Note that this method works whether the VBLRec
* is allocated globally, in the heap (as long as the record is locked in
* memory) or if it is allocated on the stack as is the case in this example.
* In the latter case this is OK as long as the procedure which installed the
* task does not exit while the task is running. This trick allows us to get
* to the saved A5, but it could also be used to get to anything we wanted to
* store in the record.
 */
VBLRecPtr GetVBLRec ()

= 0x2008; /* MOVE.L A0,D0 */

/*
* DoVBL is called only by StartVBL ()
*/
void DoVBL (VRP)
VBLRecPtr VRP;
{

gCounter++; /* Show we can set a global */
VRP->theVBLTask.vblCount = INTERVAL; /* Set ourselves to run again */

}

Developer Technical Support August 1989

Macintosh Technical Notes

/*
* This is the actual VBL task code. It uses GetVBLRec to get our VBL record
* and properly set up A5. Having done that, it calls DoVBL to increment a
* global counter and sets itself to run again. Because of the vagaries of
* MPW C 3.0 optimization, it calls a separate routine to actually access
* global variables. See M.OV.A5 - "Setting and Restoring A5" for
* the reasons for this, as well as for a description of SetA5.
*/
void StartVBL ()
{

long curA5;
VBLRecPtr recPtr;

recPtr = GetVBLRec (); /* First get our record */
curA5 = SetA5 (recPtr->VBLA5); /* Get the saved A5 */

/* Now we can access globals */
DoVBL (recPtr); /* Call another routine to do actual work */

(void) SetA5 (curA5); /* Restore old A5 */
}

/*
* InstallVBL creates a dialog just to demonstrate that the global variable
* is being updated by the VBL Task. Before installing the VBL, we store
* our A5 in the actual VBL Task record, using SetCurrentA5 described in
* TM.OV.A5. We'll run the VBL, showing the counter being incremented,
* until the mouse button is clicked. Then we remove the VBL Task, close the
* dialog, and remove the mouse down events to prevent the application from
* being inadvertently switched by MultiFinder.
*/
void InstallCVBL ()
{

VBLRec theVBLRec;
DialogPtr infoDPtr;
DialogRecord infoDStorage;
Str255 numStr;
OSErr theErr;
Handle theItemHandle;
short theItemType;
Rect theRect;

gCounter = 0; /* Initialize our global counter */
infoDPtr = GetNewDialog (rInfoDialog, (Ptr) &infoDStorage, (WindowPtr) -1);
DrawDialog (infoDPtr);
GetDItem (infoDPtr, rStatTextItem, &theItemType, &theItemHandle,

&theRect);

/*
 * Store the current value of A5 in the MyA5 field. For more
 * information on SetCurrentA5, see M.OV.A5
 */
theVBLRec.VBLA5 = SetCurrentA5 ();
/* Set the address of our routine */
theVBLRec.theVBLTask.vblAddr = (VBLProcPtr) StartVBL;
theVBLRec.theVBLTask.vblCount = INTERVAL; /* Frequency of task, in ticks */
theVBLRec.theVBLTask.qType = vType; /* qElement is a VBL task */
theVBLRec.theVBLTask.vblPhase = 0;

/* Now install the VBL task */
theErr = VInstall ((QElemPtr)&theVBLRec.theVBLTask);

if (!theErr) {
do {

NumToString (gCounter, numStr);

Developer Technical Support August 1989

Macintosh Technical Notes

SetIText (theItemHandle, numStr);
} while (!Button ());
theErr = VRemove ((QElemPtr)&theVBLRec.theVBLTask); /* Remove it when done */

}

/* Finish up */
CloseDialog (infoDPtr); /* Get rid of our dialog */
FlushEvents (mDownMask, 0); /* Flush all mouse down events */

}

Completion Routines

Currently, MultiFinder will not do a major, minor, or update switch if an asynchronous File Manager call is pending. This may not be true in the
future. We recommend that you use the above technique to save A5 for asynchronous File Manager calls. MultiFinder does allow a switch if an
asynchronous Device Manager or Sound Manager call is pending. When the call completes, the completion routine has no way of knowing
whose partition is active, that is, it doesn’t know if A5 is valid (it needs A5 if it wants to access a global). Sounds pretty hopeless, huh?

Well, actually this one is quite easy, you just need to put the value of A5 that “belongs” to your partition in a place where you can find it from
your completion routine. It is guaranteed that A0 will point to your parameter block when your completion routine is called, so you can use the
same technique shown with VBL tasks to put the value of A5 at a known offset from the beginning of the parameter block, and then reference it
from A0. Completion routines are normally written in assembly language, though you can also write them in a high-level language. A simple
example of how to do this in MPW Pascal and C can be found in the previous section about VBL tasks (it was easier to provide a clear, concise
example for VBL tasks than for asynchronous Device Manager completion routines).

Time Manager Tasks

The Time Manager was rewritten for System 6.0.3. The new version will put a pointer to the TMTask record in A1. This is not true in System
6.0.2 or earlier. The technique shown in the example VBL for accessing an application’s globals is possible using System 6.0.3 and the Time
Manager. Prior to System 6.0.3, the task must also store the application’s A5 into its code. This method is not a very good idea and runs the risk
of incompatibility (self–modifying code).

Interrupt Service Routines

If your application needs to get to its application globals, and it replaces the standard 68xxx interrupt vectors (levels 1-7) with pointers to its
own routines, it must also store the application’s A5 into its code (since there is no parameter block for interrupt service routines). This method
is not a very good idea and runs the risk of compatibility (self–modifying code).

Note: WDEFs should also maintain a copy of A5 in the same fashion as Time Manager tasks (prior to System Software 6.0.3) and
set up A5 when called; WDEFs should also be non-purgeable.

Launching and MultiFinder

Developer Technical Support August 1989

Macintosh Technical Notes

M.PS.SubLaunching discusses the sublaunching feature of Systems 4.1 and newer. If you
are running MultiFinder, and you use the technique demonstrated in that Technical Note,
your application will be able to launch the desired application and remain open. Note:
MultiFinder does not support _Chain; your application should never call this trap.

The application that you launch will become the foreground application. Unlike non-
MultiFinder systems, when the user quits the application that you have sublaunched, control
will not necessarily return to your application, but rather to the next frontmost layer.

Note: The warnings in M.PS.SubLaunching about sublaunching still apply, but,
if you still wish to sublaunch, we strongly recommend that you set both high
bits of LaunchFlags.

The Scrap and MultiFinder

MultiFinder 6.0 and earlier keeps separate scrap variables for each partition. MultiFinder
only checks to see whether or not to increment the other partitions’ scrapCount variables
in response to a user-initiated Cut or Copy. To do this, it watches for a call to _SysEdit
(SystemEdit) or a menu event to determine if an official Cut or Copy command has been
issued.

When an application calls _PutScrap or _ZeroScrap in response to a Cut or Copy
menu selection, the other partitions’ scrapCount variables will be incremented (the other
partitions will know that something new has been put in the scrap).

_UnmountVol and MultiFinder

_UnmountVol was changed in System 4.2 so that it would work better in a shared
environment. In systems 4.1 and prior, _UnmountVol would successfully unmount a
volume even if files were open on that volume. Under MultiFinder, that would be
disastrous, since one application could unmount a volume that another application was using
(this exact problem could occur when MultiFinder is not active, if a DA unmounted a
volume “out from under” an application).

System 4.2 changes the behavior of _UnmountVol (whether or not MultiFinder is active)
so that it returns a -47 (FBsyErr) error if any files are open on the volume you wish to
unmount. Since the Finder always has a Desktop file open for each volume, a call to
_UnmountVol asks it to close the Desktop file so you won’t get an error if the only file
open is the Desktop file. However, there is a bug with this new behavior. In System 6.0.3,
and earlier, _UnmountVol does not close the Desktop file for MFS–formatted volumes.
Only the Finder can unmount a MFS volume (when the user drags the disk icon to the trash).

Developer Technical Support August 1989

Macintosh Technical Notes

Displaying a Splash Screen

Some applications like to put up a “splash screen” to give the user something to look at
while the application is loading. If your application does this and has the
canBackground bit set in the size resource, then it should call _EventAvail several
times (or _WaitNextEvent or _GetNextEvent) before putting up the splash screen, or
the splash screen will come up behind the frontmost layer. If the canBackground bit is
set, MultiFinder will not move

Developer Technical Support August 1989

Macintosh Technical Notes

your layer to the front until you call _GetNextEvent, _WaitNextEvent, or
_EventAvail.

The Apple Menu and MultiFinder

Applications should avoid doing anything untoward with the Apple menu. For example, if
your application puts an icon next to the “About MyApplication…” item, MultiFinder may
unceremoniously write over it. It is important to consider the Apple Menu owned by the
system. You can have the standard about item, but other than this, you should avoid using
the Apple menu. Don’t make any assumptions about the contents of this menu. Even
reading from its data may be a compatibility risk since its structure may change.

Interprocess Communication

MultiFinder 6.0, and earlier, does not have full-fledged interprocess communication
facilities. There is no standard way to communicate between applications in MultiFinder
6.0. There are, however, a couple of ways to communicate between applications.

Note: It is in your best interest to wait until Apple implements Interapplication
Communication (IAC) in System 7.0.

_PostEvent

Even though you can have many applications running at once, each with a fairly independent
world, the Event Manager maintains only one event queue. Because of this single queue,
and because there is no facility implemented to keep track of which events belong to which
layer, all events in the queue are passed to the frontmost application. This situation can
cause problems for applications that take advantage of application-defined events. If the
application is in the background and posts one of these events, then it is the foreground
application that receives it.

This does not apply to events which are not really stored in the event queue. The list of
these events include, but is not limited to, activate and update events, which are generated by
the Window Manager as needed, and are correctly routed to the right application.

Miscellaneous Miscellanea

The sound driver glue that shipped with MPW 1.0 and 2.0 is not MultiFinder compatible
and should not be used. This also includes much of the glue supplied with older
development systems. Instead, applications should be using the Sound Manager.

All code needs to be aware of the shared environment; this includes screen savers. Screen
Developer Technical Support August 1989

Macintosh Technical Notes

savers should make sure that background processing continues. A simple scenario for a
screen saver that’s an INIT might be: patch _PostEvent at INIT time, put up a full-screen
black window spider, call _WaitNextEvent, and watch _PostEvent to see if an event
that should cause the screen saver to go away has occurred.

Further Reference:

Developer Technical Support August 1989

Macintosh Technical Notes

• Inside Macintosh, Volume V, Compatibility Guidelines

Developer Technical Support August 1989

Macintosh Technical Notes

• Programmer’s Guide to MultiFinder (APDA)
• M.PS.SubLaunching
• M.OV.GestaltSysenvirons
• M.TB.Multifinder
• M.OV.Multifinder
• M.OV.A5

Developer Technical Support August 1989

